
  

LEARNING TO LEARN MATHEMATICS – A MATH BRIDGE 
COURSE FOCUSSING ON EPISTEMOLOGY AND THINKING 

STRATEGIES 
Andrea Hoffkamp, Jörn Schnieder, Walther Paravicini 

Humboldt-Universität zu Berlin 
Universität zu Lübeck 

Westfälische Wilhelms-Universität Münster 
University students, especially in their first semesters, often lack specific 
mathematical learning and working techniques that are needed to develop and apply 
mathematical notions, definitions, theorems and proofs. We consider this to be a key 
factor for problems arising in the secondary-tertiary transition in math related 
courses. Our approach targets at communicating to first-year students thinking, 
learning and working techniques that are typical of doing mathematics. Therefore we 
invoke philosophical aspects of epistemology. We show how our theoretical 
considerations lead to the development of a teaching design for the teaching and 
learning of mathematical reasoning, argumentation and proof, making the 
methodological foundations of mathematics explicit and accessible for the students. 
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INTRODUCTION 
Courses in mathematics at university level are often considered to be difficult. 
Unsatisfactory exam results and high drop-out rates seem to confirm this. Of course 
there are many reasons for this and the measures and projects to deal with it is also 
manifold. In Germany, for instance, a notable example is the council the “German 
Centre for Higher Mathematics Education” (http://www.khdm.de) that was founded 
in 2011, but there are also many projects like the already completed project SAiL-M 
(http://www.sail-m.de), in which two of the authors took part as team members.  
Many students fail because of their insufficient prerequisites, some just do not have 
the ability to work independently or do not have enough self-discipline to prepare and 
review lectures and exercise meetings efficiently. We think one main reason why 
students fail in university mathematics is that they do not know how to learn 
mathematics properly. 
In fact a lot of math bridge courses are organized as blended learning scenarios 
aiming at the repetition of mathematical content and training exercises (i.e. the 
project http://www.math-bridge.org, see also: Biehler et al. 2012). Within such 
courses mathematical learning and working strategies are mainly taught implicitly. 
Talking about the secondary-tertiary transition, Gueudet (2008) named several 
perspectives and issues in this field. In our work we take an epistemological and 



  
didactical perspective, and we present a teaching design within our bridge course 
focussing on argumentation and mathematical proof. Unlike many other bridge 
courses at German universities, we do not (only) aim at the repetition of 
mathematical skills and knowledge mentioning superior concepts and working 
strategies more or less explicitely. But we have a strong focus on uncovering, 
discussing and training of the methodological foundations of argumentation and 
proving. In our approach mathematical skills and contents are used as occasions and 
examples for the development and reflection of comprehensive strategies in an 
explicit and general way. We feel confident that the methods presented in this 
contribution could lead to a comprehension-oriented teaching concept, by making 
core principles of mathematics as a science and mathematical working explicit (von 
Hentig 2003, p. 197) and allow to teach resp. learn how to learn mathematics. 
The secondary-tertiary transition concerning mathematical argumentation and proof 
is characterized as follows:  
Mathematical argumentation and especially mathematical proving at school is only 
taught in an exemplary way (Douek, 1999). Bringing the metatheoretical aspects of 
mathematical proofs that legitimate the employed methodological means up for 
discussion is not envisaged or reflected explicitely. We think that this is a key factor 
for transition from school to university. 
The presented article is meant as a theoretical contribution to the described topic 
although we present a concrete teaching design illustrating and underpinning our 
theoretical approach. Like Wittmann (1995) we consider the science of mathematics 
education to be a ‚design science’ that  

„presupposes a specific didactic approach that integrates different aspects into a coherent 
and comprehensive picture of mathematics teaching and learning and then transposing it 
to practical use in a constructive way.“ (Wittmann 1995, p. 356) 

In our article we focus on a learning activity exploring the epistemological aspects of 
mathematical proofs. In the next section we describe our theoretical position and give 
a didactical analysis of the issue. After that we shortly describe the target audience, 
objectives and context of our math bridge course. Following this, we present a 
learning scenario together with didactical and methodological comments 
(mathematical reasoning and justification – learning scenario and didactical 
comments). We close the article with a summary and outlook on research questions 
guiding our future work. 

THEORETICAL POSITION AND DIDACTICAL PERSPECTIVE 
One of the most important methodological principles of mathematics – and in fact of 
any science – is the principle of transsubjective comprehensibility of its results. This 
means that there is a demand for the comprehensibility of the terminology and the 
notions, but also the duty to explain and justify its assertions. Especially everybody – 
provided that she/he has the adequate prerequisites – should be able to check and 



  
understand mathematical assertions (at least this should be possible in principle) 
(Janich 2002, Gatzemeier 2005). 
In other words, the main target of mathematical arguments and proofs is to convince 
ourselves or others of the truth of (mathematical) propositions that seem questionable 
or are uncertain (Thiel 1973). In this sense the methods of mathematical proof could 
be considered as tools or as a guideline for the development of mathematical 
argumentations, and thus ensure the transsubjective comprehensibility of scientific 
findings (Lorenzen 1968). 
Following the above epistemological and normative perspective of mathematical 
argumentation we are – at this point – only concerned with the minimum 
requirements for effective mathematical reasoning. Therefore, we abstract from 
special didactical differentiations between proofs as processes resp. proofs as 
products, or between (fully) formalized proofs resp. proofs “really performed” in 
textbooks (Duval 1991, Douek 1999). Moreover, we assume that our approach could 
lead to fruitful suggestions to close the gaps between the above differentiations in a 
theoretical and practical way. 
What is our understanding of mathematical argumentation? Mathematical 
argumentation (as any argumentation) can be structured into the classical premise-
inference-conclusion patterns written in a linear form (Tetens 2004). The verifiability 
of the conclusion is derived from certain propositions (premises). These do not 
require further justification or have to be accepted as having been justified already. In 
particular, the rules of inference are stated and justified explicitly. A mathematical 
argumentation that is modelled after this pattern can neither be accused of running 
into fruitless circular reasoning, nor of culminating in an infinite argumentative 
regress, nor of aborting the argumentation by appealing to a dogma, i.e., it does not 
lead into the notorious “Münchhausen-Trilemma” formulated by Hans Albert (1991). 
The dialogic character of argumentation is a central idea. In some sense it could be 
seen as a basis for the interpretation of (logical) implications. For a short overview 
from a didactical perspective we refer to Durand-Guerrier and Barrier (2007). 
Following this idea, logic does not deal with (everlasting) laws of verity (Frege 
2003), but logic is a means to create new knowledge from existing knowledge (Thiel 
1980).  
Therefore we want the students to critically discuss the ideal of transsubjective 
comprehensibility as a minimum condition for mathematics as a science. The 
premises-inference-conclusion pattern should be recognized as a tool to reach this 
ideal. For this reason we do not only want to teach some basic theoretical knowledge 
of argumentation, and train the students to read and produce proofs basing on this 
pattern. Furthermore we want the students to discuss these tools on a normative basis 
considering their usefulness to achieve the ideal of transsubjective comprehensibility. 
The above logical pattern presented in a linear form has some didactical advantages 
in the sense of a didactical reduction.  



  
The linear form is much easier to understand than the common Toulmin-scheme (as 
didactically analysed in Barrier, Mathé & Durand-Guerrier 2009) or game theoretical 
concepts (as presented in Vernant 2007, Marion 2006, or Durand-Guerrier & Barrier 
2008), since we reduce the number of notions (warrants, backings etc.) and the 
number of dialogical rules. However, the main advantage is that, beginning with 
Euclid’s “Elemente”, proofs in mathematical literature and lectures have a monologic 
form of argumentation by presenting a proof as a step-by-step construction. Their 
dialogic character weighing the pros and cons and showing the decisions taken is 
usually not obvious. In this sense mathematical texts emphasize the product-aspect 
more than the process-aspect of proofs. 
We believe that the normative discussion could enable the students to critically 
reflect general objectives of mathematics as a science and to recognize 
methodological decisions as being appropriate. At least we hope that this could lead 
to higher motivation and autonomous learning following an ideal of continuous 
rationality.  

TARGET AUDIENCE, CONTEXT AND OBJECTIVES 
The math bridge course is designed for first semester students with mathematics as a 
major subject, but also for future math teachers. A first course integrating the 
presented learning scenario was held at the University of Education Ludwigsburg in 
October 2012. In Ludwigsburg, future teachers (primary school, secondary school up 
to grade 10 and special school) are educated and have to take a variety of math 
courses depending on their choice of study programme. Especially here we hope that 
our approach has a positive impact on the future teachers’ idea of mathematics and 
hence on their teaching at school. 
We expect the target audience to be very heterogeneous and differ widely in their 
mathematical competencies, learning motivation and general academic ability. 
Nevertheless we want to achieve some common learning goals. 
At school the students usually come in contact with mathematical proofs in an 
exemplary form - for instance when applying geometrical theorems about the 
congruence of triangles in their reasoning or when proving the irrationality of 2 . In 
the “educational standards” for mathematics in Germany (KMK 2003) mathematical 
reasoning is one out of six mentioned competencies within mathematics education at 
school. With our learning scenario we want to build on this basic knowledge of the 
students and achieve the following learning objectives: 
The students should  

- analyze mathematical proofs considering the example of the proof by 
contradiction and understand as well as describe their deductive structure. 

- realize that completeness and deductive derivation are necessary criteria for 
mathematical proofs and adopt the ideal of the premises-inference-conclusion 
pattern as a reasonable means for mathematical argumentation. 



  
MATHEMATICAL REASONING AND JUSTIFICATION – TEACHING 
DESIGN 
The presented teaching design consists of three phases:  
First a lecture (Phase 1: Information) in which the students are provided with 
information about the basics of “naïve logic” and the method of “proof by 
contradiction”. Second the first part of the exercise session in which mathematical 
proofs are analyzed and compared (Phase 2: Cognition). Third the second part of the 
exercise session that provides an activity to think about argumentation and proof 
from a philosophical point of view (Phase 3: Metacognition). We will shortly 
describe each phase including didactical and methodological comments referring to 
our theoretical position.  
Phase 1 (Lecture): In the first part of the lecture we introduce the usual logical 
operators including the quantifiers. Although we want formal inter-relations to 
become transparent by discussing some of the logical riddles and parallels to 
everyday language, this part is organized in a stringent way and mainly directed and 
executed by the lecturer. 
The second part of the lecture includes a lot more interaction with the audience. Here 
we analyze the “model” of a proof by contradiction by comparing two examples. 
First we present an example of Cohors-Fresenborg and Kaune (2010, p. 31). Here a 
judge reasons why a defendant is proved to be innocent following the scheme of a 
proof by contradiction in the following way:  

Assuming that the defendant is guilty (here: robbed the bank). Then he would have been 
in A-town at 16:00 h. This means he could have been in B-town no earlier than 17:30 h, 
since you need at least 90 minutes for this distance. Since the bank in B-town was robbed 
at 17:00 h, this contradicts the given facts. Hence, the defendant has to be innocent. 

Together with the audience we develop the following scheme of the proof:  
Logical opposite of the claim  conclusion from the first line  conclusion from the 
second line  fact  conclusion (“a contradiction appears”)  conclusion (“the 
claim is true”). 
To obtain the pattern of a chain of deductions the students need to identify the 
premises and the implication steps. Moreover this example allows resp. forces us to 
reflect on the character of mathematical propositions and leads us to the law of the 
excluded middle and the law of non-contradiction (Russell 1912). 
The second example is a proof of the infinity of the prime numbers as given by 
Euklid. The lecturer cut the steps of the proof in lines and put the lines in a wrong 
order (proof-jigsaw). The audience is asked to find the right order and figure out the 
correspondences between the two examples. The results are collected by the lecturer. 
Unlike many other bridge courses we do not aim at completeness in the sense that we 
try to communicate the complete range of methods of mathematical proofs. However 
we chose the „proof by contradiction“ as being an exemplary method. By choosing 



  
the above approach we hope to implicitely suggest that formal (naïve) logic is a 
technical means for the proper formulation of mathematical propositions and 
everyday statements.  
Phase 2 (Cognition): The above scenario is taken up again in the exercise session in 
the afternoon, where two more proof-jigsaws of the proof of the infinity of primes are 
given differing widely in their level of detail. One proof-jigsaw is a very brief version 
of the proof similar to the one in Aigner & Ziegler (2009). The other one is a very 
long and detailed version including a high level of formalization. The students for 
groups and are again asked to put the proof-lines into a meaningful, while at the same 
time comparing and discussing all three given proofs for the infinity of the prime 
numbers. 
We hope that this creates some sort of provocation resp. irritation in the following 
sense: At school mathematics is usually done by learning and applying “recipes”. 
Usually there is only one way of execution and the result can be right or wrong. The 
above scenario allows the discussion of three different forms of argumentations, 
providing an action-oriented and suggestive access to the main objective of the 
learning scenario: The students discover and reflect the structure of mathematical 
proofs as chains of deductions. But they also implicitly discover the dialogic 
character of mathematics as a science through considering a proof to be an attempt to 
convince another person of the truth of my own statement. This attempt depends on 
the mathematical background or context of the reader/producer of a proof.  
The learning activity leads directly to a higher level of abstraction through the 
thought experiment “What if a mathematical proof could never be formulated 
completely?” In the end the question “What are the basic rules a proof must follow to 
be convincing?” – a question of validity – could arise, leading to the last phase of our 
learning scenario. 
Phase 3 (Metacognition):  
The last phase is directed by the questions How do I know that it is true? or What is a 
perfect proof? 
For this activity it is important to create an atmosphere of discussion and reflection to 
gain various ideas of the participants. Therefore we put the students together in 
groups providing them with only few – but accentuated – impulses. 
The students are provided with some further material leading them to the question of 
justification and validity as follows: 

The Münchhausen-Trilemma  

If we ask of any knowledge: "How do I know that it's true?", we may provide proof; yet 
that same question can be asked of the proof, and any subsequent proof. The 
Münchhausen Trilemma is that we have only three options when providing proof in this 
situation: 



  
- The circular argument, in which theory and proof support each other (i.e. we repeat 
ourselves at some point) 

- The regressive argument, in which each proof requires a further proof, ad infinitum (i.e. 
we just keep giving proofs, presumably forever)  

- The axiomatic argument, which rests on accepted precepts (i.e. we reach some bedrock 
assumption or certainty) 

The first two methods of reasoning are fundamentally weak, and because the Greek 
sceptics advocated deep questioning of all accepted values they refused to accept proofs 
of the third sort. The trilemma, then, is the decision among the three equally unsatisfying 
options.1 

The students are asked to work in groups on the following tasks: Formulate 
connections between the proof-jigsaws and the Münchhausen-Trilemma text. Name 
characteristics of “a perfect proof”. 
The results of the groups are collected in the end. Using this method we hope to get a 
larger variety of ideas as well as to involve all the students in the discussion process 
by generating commitment for everybody. But especially we want to allow a first step 
towards the establishment of socio-mathematical norms  

“which means in this context, criteria shared by students and teachers to decide whether a 
proof is valid or not, what is a satisfactory explanation, etc.” (Gueudet 2008, p. 243) 

The didactical potential of this learning activity lies in the following:   
Since most of the students have not thought about justification-theoretical aspects of 
mathematical proofs so far, this activity could create the awareness of the problem 
area. Therefore we provide the students with three proofs that differ widely in the 
given details, which can be seen as an analogue to the “infinite  regress” in the 
Münchhausen-Trilemma. We want the students to reflect their implicit convictions 
resulting from their previous mathematical experiences, and lead them to the question 
“What is a perfect proof?” in a suggestive way.  
The reflection about the three options given in the Münchhausen-Trilemma could 
lead to the conviction that the premises-inference-conclusion pattern is a reasonable 
and adequate means for mathematical argumentation. But it also allows the 
recognition of „mathematical work“: Defined properties can be used without proof, 
whereas all other properties must be proved by only using the definitions. This is also 
mentioned by Duval (1991) who pointed out the importance of the awareness of the 
logical status of propositions when trying to understand a mathematical proof – 
especially the difference between premise, theorem, conclusion etc.  

                                         
1 The Münchhausen-Trilemma after H. Albert (1991). English formulation as in 
http://en.wikipedia.org/wiki/Münchhausen_Trilemma (14.9.2012) 



  
SUMMARY AND OUTLOOK 
The aims of the math bridge course we present in this paper are twofold: the 
development of basic mathematical skills and the explicit training of strategies for the 
learning of mathematics as a science. Our central method for teaching these learning 
strategies is to construct a teaching scenario that encourages the students to do two 
things. First, to implicitly apply these strategies in the course of an exercise. Second, 
to become aware of and to discuss their methodological status as norms or ideals that 
one should follow in order to justify knowledge as scientifically objective. As a 
concrete example, we outline a teaching scenario, including some comments on our 
didactical reasoning and teaching methods, that aims at clarifying the central inner- 
and metamathematical significance of deductive reasoning. This way, the students 
should not only value the importance of the concept of deductive reasoning in 
scientific mathematics, but also discuss the legitimacy of this concept as a helpful 
tool in reaching objective scientific knowledge in science in general. 
In October 2012 a first bridge course integrating the above learning scenario was 
realized at the University of Education Ludwigsburg. This was meant as a first test of 
our approach and led us to further considerations and the formulation of research 
questions. In Ludwigsburg about 300 students took part in the bridge course. 150 of 
the students are future primary school and special school teachers who did not choose 
mathematics as a major subject, but will have to attend several mathematics courses. 
These students visited the lecture of one of the authors and a small part of these 
students took part in the exercise sessions conducted by her. Their attitude towards 
mathematics was mainly characterized by a procedural view of mathematics and by 
the fear of not managing the subject. Our experiences let us hope that our approach is 
practical and useful even with such an audience. Although the first realization is far 
from being empirically solid, we present some of the students’ comments to give an 
impression of the students’ “view of mathematics” after the bridge course: 

“I got another view of mathematics in the sense that things are not just as they are, but 
that there is a reason for everything and one could ask for the reason. The children will 
also ask for reasons at school.” 

“I found it good to get motivated and to get another view of mathematics (questioning 
calculation rules: Why is it like that?)” 

In the future we plan to develop further learning scenarios and a large pool of 
differentiated exercises for subsequent courses to allow the students to group 
themselves according to their individual needs. Another bridge course integrating our 
approach will be held at Humboldt-Universität zu Berlin in October 2013.  
Our future work will be guided by the following research questions: 

• Will the “metacognitive” considerations lead to more comprehension 
concerning mathematical argumentation and proof and their relation to 
everyday language? 



  

• Will our approach help the students not only to understand a proof as a product 
but to produce their own proofs? 

• In which way is the students’ view of mathematics as a science changed, and 
how does this change influence their learning of mathematics? E.g. will the 
students be enabled to work more autonomously on mathematical problems 
(including tasks that aim at argumentation, but also tasks to train skills)? 
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